

SSC8L48PN6

N-Channel Enhancement Mode MOSFET

> Features

V _{DS}	V _{GS}	R _{DS(ON)} Typ.	I _D
40V	±20V	0.69mΩ@10V	245A
400	<u> </u>	1mΩ@4V5	245/4

Description

This device is N-Channel enhancement MOSFET.

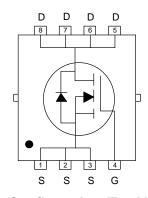
Uses SGT technology and design to provide excellent

RDSON with low gate charge. This device is suitable
for use in DC-DC conversion, power switch and
charging circuit.

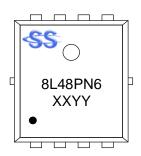
100% UIS + ΔVDS + Rg Tested!

> Applications

- Load Switch
- PWM Application
- Power Management
- DC-DC Conversion


Ordering Information

Device	Package	Shipping
SSC8L48PN6	PDFN5X6-8L	5000/Reel


Pin configuration

PDFN5X6-8L

Pin Configuration (Top View)

Marking

(XXYY: Internal Traceability Code)

➤ Absolute Maximum Ratings (T_A=25 °C unless otherwise noted)

Symbol	Parameter	Ratings	Unit	
V _{DSS}	Drain-to-Source Voltage		40	V
V _{GSS}	Gate-to-Source Volta	Gate-to-Source Voltage		V
1	Continuous Drain Current d	Tc=25℃	245	^
I _D	Continuous Drain Current	Tc=100℃	140	A
	Outline Davis Outline	T _A =25℃	50	
I _{DSM}	Continuous Drain Current ^a	T _A =70℃	36	A
Ідм	Pulsed Drain Curren	Pulsed Drain Current b		Α
-	Danier Biodination 6	T _C =25℃	83.3	W
P _D	Power Dissipation ^c	$T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{A}=70^{$	33.3	
5	Daniel Distriction 3	T _A =25℃	3.13	107
P _{DSM}	Power Dissipation ^a	T _A =70°C	2	W
las	Avalanche Current ^b L=0.5mH Single Pulse		61	Α
Eas	Avalanche Energy ^b L=0.5mH Single Pulse		930	mJ
TJ	Operation junction temperature		-55~150	°C
T _{STG}	Storage temperature range		-55~150	$^{\circ}\mathbb{C}$

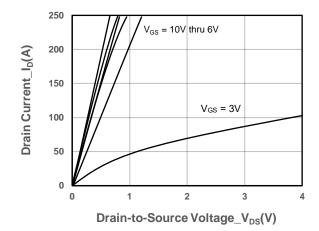
➤ Thermal Resistance Ratings (T_A=25°C unless otherwise noted)

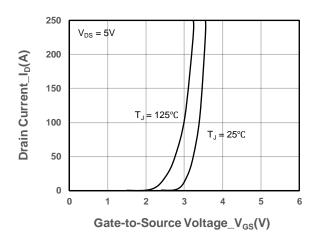
Symbol	Parameter	Max.	Unit
Reja	Junction-to-Ambient Thermal Resistance a	40	°C/W
$R_{ heta JC}$	Junction-to-Case Thermal Resistance	1.5	C/VV

Note:

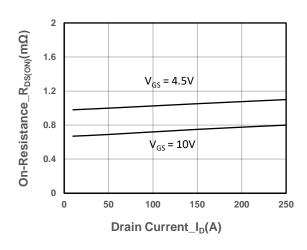
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A=25°C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

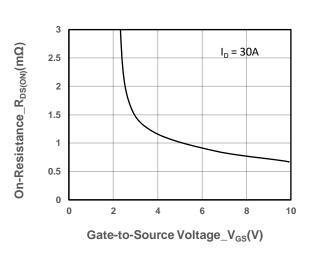
SSC-V1.2 www.sscsemi.com Analog Future



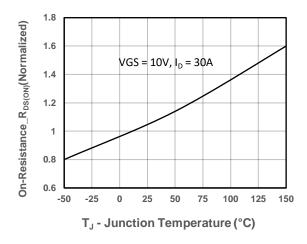

\succ Electrical Characteristics (T_A=25°C unless otherwise noted)

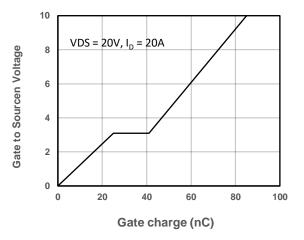
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	40			V
Gate Threshold Voltage	V _{GS(th)}	V _{DS} = V _{GS} , I _D = 250uA	1	2	3	V
Drain-Source On-Resistance	D	V _{GS} = 10V, I _D = 30A		0.69	0.9	mΩ
Dialii-Source Oil-Resistance	$R_{DS(on)}$	V _{GS} = 4.5V, I _D = 15A		1	1.4	mΩ
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 40V, V _{GS} = 0V			1	μA
Gate-Source Leak Current	Igss	$V_{GS} = \pm 20V, V_{DS} = 0V$			±100	nA
Forward Voltage	V_{SD}	V _{GS} = 0V, I _S = 15A		0.78	1.4	V
Gate Resistance	R _G	V _{DS} = 0V, f = 1MHz		1.5		Ω
Input Capacitance	C _{ISS}	\\\- = 20\\ \\\- = 0\\		7450		
Output Capacitance	Coss	$V_{DS} = 20V$, $V_{GS} = 0V$, $f = 1MHz$		1340		pF
Reverse Transfer Capacitance	C _{RSS}	1 – 1101112		490		
Total Gate Charge	Q _G	V _{GS} = 10V, V _{DS} = 20V,		85		
Gate to Source Charge	Q _{GS}	$I_{D} = 20A$		25		nC
Gate to Drain Charge	Q_{GD}	1D - 20A		16		
Turn-on Delay Time	$T_{D(ON)}$			16		
Rise Time	Tr	$V_{GS} = 10V, V_{DS} = 20V,$		90		
Turn-off Delay Time	$T_{D(OFF)}$	$R_L = 2\Omega$, $R_G = 3\Omega$		150		ns
Fall Time	T _f			80		
Diode Recovery Time	Trr	I⊧=20A, di/dt=100A/us		50		ns
Diode Recovery Charge	Qrr	I⊧=20A, di/dt=100A/us		80		nC


➤ Typical Performance Characteristics (T_A=25°C unless otherwise noted)



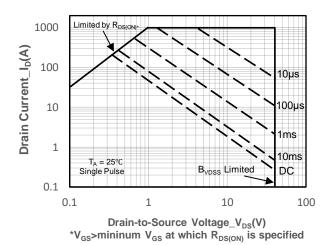
Output Characteristics





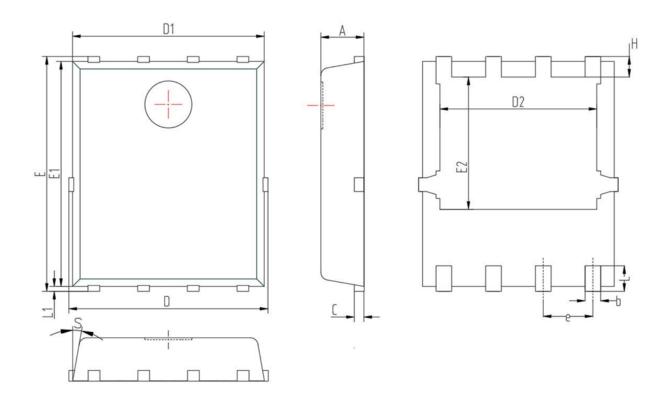
On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Gate-to-Source Voltage



On-Resistance vs. Junction Temperature

Gate-Source Voltage vs. Gate charge



Safe Operating Area vs. Junction-to-Ambient

Package Information

Cumbal	MILL IMETER			
Symbol	Min	Nom	Max	
А	0.90	1.05	1.20	
b	0.25	0.30	0.51	
С	0.15	0.25	0.35	
D	4.80	5.10	5.40	
D1	4.80	5.00	5.20	
D2	3.70	4.00	4.30	
E	5.80	6.15	6.50	
E1	5.50	5.75	5.95	
E2	3.30	3.45	3.67	
е	1.27BSC			
Н	0.40	0.60	0.93	
L	0.45	0.65	0.85	
L1	0.00	0.10	0.25	
S	0°		12°	

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.